Copied to
clipboard

G = C2xC32:2C16order 288 = 25·32

Direct product of C2 and C32:2C16

direct product, metabelian, soluble, monomial, A-group

Aliases: C2xC32:2C16, C62.3C8, (C3xC6):2C16, (C6xC12).2C4, (C3xC12).5C8, C32:6(C2xC16), C32:4C8.9C4, C4.3(C32:2C8), C32:4C8.34C22, C22.2(C32:2C8), (C3xC6).22(C2xC8), C4.19(C2xC32:C4), (C3xC12).16(C2xC4), (C2xC4).9(C32:C4), C2.1(C2xC32:2C8), (C2xC32:4C8).19C2, SmallGroup(288,420)

Series: Derived Chief Lower central Upper central

C1C32 — C2xC32:2C16
C1C32C3xC6C3xC12C32:4C8C32:2C16 — C2xC32:2C16
C32 — C2xC32:2C16
C1C2xC4

Generators and relations for C2xC32:2C16
 G = < a,b,c,d | a2=b3=c3=d16=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, dbd-1=b-1c >

Subgroups: 144 in 50 conjugacy classes, 22 normal (16 characteristic)
Quotients: C1, C2, C4, C22, C8, C2xC4, C16, C2xC8, C2xC16, C32:C4, C32:2C8, C2xC32:C4, C32:2C16, C2xC32:2C8, C2xC32:2C16
2C3
2C3
2C6
2C6
2C6
2C6
2C6
2C6
9C8
9C8
2C12
2C12
2C12
2C2xC6
2C2xC6
2C12
9C2xC8
9C16
9C16
2C2xC12
2C2xC12
6C3:C8
6C3:C8
6C3:C8
6C3:C8
9C2xC16
6C2xC3:C8
6C2xC3:C8

Smallest permutation representation of C2xC32:2C16
On 96 points
Generators in S96
(1 59)(2 60)(3 61)(4 62)(5 63)(6 64)(7 49)(8 50)(9 51)(10 52)(11 53)(12 54)(13 55)(14 56)(15 57)(16 58)(17 85)(18 86)(19 87)(20 88)(21 89)(22 90)(23 91)(24 92)(25 93)(26 94)(27 95)(28 96)(29 81)(30 82)(31 83)(32 84)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 65)(48 66)
(2 48 95)(4 81 34)(6 36 83)(8 85 38)(10 40 87)(12 89 42)(14 44 91)(16 93 46)(17 72 50)(19 52 74)(21 76 54)(23 56 78)(25 80 58)(27 60 66)(29 68 62)(31 64 70)
(1 47 94)(2 48 95)(3 96 33)(4 81 34)(5 35 82)(6 36 83)(7 84 37)(8 85 38)(9 39 86)(10 40 87)(11 88 41)(12 89 42)(13 43 90)(14 44 91)(15 92 45)(16 93 46)(17 72 50)(18 51 73)(19 52 74)(20 75 53)(21 76 54)(22 55 77)(23 56 78)(24 79 57)(25 80 58)(26 59 65)(27 60 66)(28 67 61)(29 68 62)(30 63 69)(31 64 70)(32 71 49)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,81)(30,82)(31,83)(32,84)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,65)(48,66), (2,48,95)(4,81,34)(6,36,83)(8,85,38)(10,40,87)(12,89,42)(14,44,91)(16,93,46)(17,72,50)(19,52,74)(21,76,54)(23,56,78)(25,80,58)(27,60,66)(29,68,62)(31,64,70), (1,47,94)(2,48,95)(3,96,33)(4,81,34)(5,35,82)(6,36,83)(7,84,37)(8,85,38)(9,39,86)(10,40,87)(11,88,41)(12,89,42)(13,43,90)(14,44,91)(15,92,45)(16,93,46)(17,72,50)(18,51,73)(19,52,74)(20,75,53)(21,76,54)(22,55,77)(23,56,78)(24,79,57)(25,80,58)(26,59,65)(27,60,66)(28,67,61)(29,68,62)(30,63,69)(31,64,70)(32,71,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)>;

G:=Group( (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,49)(8,50)(9,51)(10,52)(11,53)(12,54)(13,55)(14,56)(15,57)(16,58)(17,85)(18,86)(19,87)(20,88)(21,89)(22,90)(23,91)(24,92)(25,93)(26,94)(27,95)(28,96)(29,81)(30,82)(31,83)(32,84)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,65)(48,66), (2,48,95)(4,81,34)(6,36,83)(8,85,38)(10,40,87)(12,89,42)(14,44,91)(16,93,46)(17,72,50)(19,52,74)(21,76,54)(23,56,78)(25,80,58)(27,60,66)(29,68,62)(31,64,70), (1,47,94)(2,48,95)(3,96,33)(4,81,34)(5,35,82)(6,36,83)(7,84,37)(8,85,38)(9,39,86)(10,40,87)(11,88,41)(12,89,42)(13,43,90)(14,44,91)(15,92,45)(16,93,46)(17,72,50)(18,51,73)(19,52,74)(20,75,53)(21,76,54)(22,55,77)(23,56,78)(24,79,57)(25,80,58)(26,59,65)(27,60,66)(28,67,61)(29,68,62)(30,63,69)(31,64,70)(32,71,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,59),(2,60),(3,61),(4,62),(5,63),(6,64),(7,49),(8,50),(9,51),(10,52),(11,53),(12,54),(13,55),(14,56),(15,57),(16,58),(17,85),(18,86),(19,87),(20,88),(21,89),(22,90),(23,91),(24,92),(25,93),(26,94),(27,95),(28,96),(29,81),(30,82),(31,83),(32,84),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,65),(48,66)], [(2,48,95),(4,81,34),(6,36,83),(8,85,38),(10,40,87),(12,89,42),(14,44,91),(16,93,46),(17,72,50),(19,52,74),(21,76,54),(23,56,78),(25,80,58),(27,60,66),(29,68,62),(31,64,70)], [(1,47,94),(2,48,95),(3,96,33),(4,81,34),(5,35,82),(6,36,83),(7,84,37),(8,85,38),(9,39,86),(10,40,87),(11,88,41),(12,89,42),(13,43,90),(14,44,91),(15,92,45),(16,93,46),(17,72,50),(18,51,73),(19,52,74),(20,75,53),(21,76,54),(22,55,77),(23,56,78),(24,79,57),(25,80,58),(26,59,65),(27,60,66),(28,67,61),(29,68,62),(30,63,69),(31,64,70),(32,71,49)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)]])

48 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D6A···6F8A···8H12A···12H16A···16P
order12223344446···68···812···1216···16
size11114411114···49···94···49···9

48 irreducible representations

dim1111111144444
type++++-+-
imageC1C2C2C4C4C8C8C16C32:C4C32:2C8C2xC32:C4C32:2C8C32:2C16
kernelC2xC32:2C16C32:2C16C2xC32:4C8C32:4C8C6xC12C3xC12C62C3xC6C2xC4C4C4C22C2
# reps12122441622228

Matrix representation of C2xC32:2C16 in GL5(F97)

10000
096000
009600
000960
000096
,
10000
01000
00100
00001
013299696
,
10000
009600
019600
0704101
083709696
,
850000
000961
013299596
034444127
051914127

G:=sub<GL(5,GF(97))| [1,0,0,0,0,0,96,0,0,0,0,0,96,0,0,0,0,0,96,0,0,0,0,0,96],[1,0,0,0,0,0,1,0,0,13,0,0,1,0,29,0,0,0,0,96,0,0,0,1,96],[1,0,0,0,0,0,0,1,70,83,0,96,96,41,70,0,0,0,0,96,0,0,0,1,96],[85,0,0,0,0,0,0,13,34,51,0,0,29,44,91,0,96,95,41,41,0,1,96,27,27] >;

C2xC32:2C16 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes_2C_{16}
% in TeX

G:=Group("C2xC3^2:2C16");
// GroupNames label

G:=SmallGroup(288,420);
// by ID

G=gap.SmallGroup(288,420);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,28,58,80,9413,691,12550,2372]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^3=c^3=d^16=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,d*b*d^-1=b^-1*c>;
// generators/relations

Export

Subgroup lattice of C2xC32:2C16 in TeX

׿
x
:
Z
F
o
wr
Q
<